
At a Glance
- There are hundreds of biologicals, biostimulants and other nontraditional crop products on the market.
- A starting point in testing these products might be planting simple “with” and “without” test strips across a field.
- Planting test strips across a range of nitrogen rates, along with check strips, offer the most useful results.
It’s like the Wild West out there in the world of crop biologicals. There are hundreds of products, but many farmers don’t know where to start to decide which ones, if any, will boost their bottom line, improve crop health or reduce nutrient inputs.
There are many questions. How do I decide which biologicals will work on my farm? How do I know if they are worth the money? Where do I start to test in the field what works on our own farm?
The new Farm Progress podcast — FP Next — powered by John Deere, sets out to answer those questions by visiting with Laura Thompson, Nebraska’s On-Farm Research Network coordinator, in a Deep Dive episode (listen below). Listen to all episodes of FP Next.
Burning questions
Gleaned from the podcast, here are some of the questions Thompson answered, shedding light not only on biologicals and other nontraditional crop products, but also talking about how farmers can test the effectiveness of these products on their own farms.
What exactly are crop biologicals and biostimulants and why are they important? There are a lot of different products that we categorize as biologicals or biostimulants. In our on-farm research, a lot of times we look at these products as what we call more nontraditional products. These could be things like biologicals, biostimulants, as well as other things. But we’re looking at products here that have been derived from natural materials. These include beneficial microorganisms. These could be things like bacteria or fungi, but also products like seaweed extracts, amino acids, humic acids and organic compounds.
Regardless, the idea is to try to stimulate or interact with the plant and the soil to help promote growth, or it could be increasing nutrient uptake. There are a variety of reasons producers might be interested in utilizing these products. They have gained a lot of attention recently, and the reasons for that are there is interest in reducing chemical inputs, and an emphasis on soil health and how we can promote more sustainable farming practices.
These products are available for a wide variety of crops like corn, soybeans and dry edible beans, but also high-value crops and horticultural crops.
Tell us about some of your most recent studies relating to biologicals in the field. We’ve had product testing dating back many years. One of the benefits of doing that research through the On-Farm Research Network is that we have a nice repository of those studies available now. We have what is called our results finder database, where you can search and filter by different products and product names in different categories and look at how those products are performing for different people in different parts of the state, and in different production systems.
Studies that people are looking at include some commercial products like Pivot Bio and other products. A large variety of products have been tested over the years. And then some producers look at their own products as well, like homemade compost tea extracts, for instance.
Something that’s fun about our On-Farm Research Network is that it is really farmer-driven. We have such a huge variety of studies in our network because we have all the innovative and curious farmers across the area coming up with the different topics they are interested in, and we’re working with them on those studies.
These producers testing some of their own extract products are really interested in seeing how these impact (their operations) over the long term. That’s beneficial because we think about these products as being biologicals. We know that it takes time in a system to make a difference, for the system to adapt and change and to start to measure what the change might be in terms of synthetic fertilizer applications, herbicide applications and soil health.
Where do you start and how do you decide whether these products are paying off in the long run? Knowing we have such different conditions, soils, landscapes and management practices is why on-farm research is most beneficial for producers. It doesn’t have to be that complicated to test a product. But as you’re thinking about adopting a new product into your operation, it’s important that producers are getting data on how that product is performing. We all come with our bias.
If we purchased that product, we want to see how it works. If we’re just anecdotally looking to apply to the whole field and kind of going with a gut feeling, it’s natural to have a bias since we paid for a product. We want to see something, whether it is there or not.
Maybe do a test on a couple of fields first. Maybe this is the year you put in some check strips and collect the data for yourself. Maybe you will see that your gut feeling is correct, or maybe it is not what you thought.
How can producers evaluate these products on nutrient uptake for instance in their own fields? A lot of these products are looking at things like providing nitrogen for the crop. Producers often set up trials that do some simple “with” and “without” product tests. That’s a great starting point.
With precision ag technology, we’re seeing producers looking at these products at a variable nitrogen rate, maybe applying a range of nitrogen rates, maybe ranging from 75 pounds to 200 pounds of N. Applying biological products across those rates and leaving a check across those rates as well helps us look at the impact.
One of the challenges producers faced in the first couple of years of testing these products was that they would do a test over a reduced nitrogen rate and maybe see no impact for that product. This can be discouraging. But we don’t know if that N rate they were testing was already in excess of the optimal rate. That’s why we’re trying to work with producers to test across a wider range of N rates to see what product impacts might be at the optimal N rate with and without the product. This gives us a chance to see where that product might fit.
Another benefit of doing this kind of variable-rate approach and putting it into a prescription like this is that we can test it with different geographies within the field. Maybe we have some silty clay loam, and maybe we have a sandy pocket in the field. We can see if we have any difference.
In some cases, we’re not seeing an impact with these products. But that’s the depth of the testing we need to do to verify if that is the case for each producer in each region of the field. If we are not seeing a positive response, then it is still important information to have going forward in making management decisions.
Read more about:
BiologicalsAbout the Authors
You May Also Like