Farm Progress is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Serving: IA
 Dicamba herbicide drift injury to non-dicamba resistant soybean varieties in Iowa in 2020 Farm Progress
SYMPTOMS: Dicamba herbicide drift injury to non-dicamba resistant soybean varieties in Iowa in 2020 is more widespread than in the past three years.

Dicamba: What does the research say?

Iowa State’s Bob Hartzler reviews recent studies investigating factors that influence off-target drift of dicamba herbicide.

Nearly 20 years ago Iowa State University Extension weed management specialist Bob Hartzler summarized research from the University of Minnesota investigating factors that influence volatilization of dicamba.

The Minnesota research by R. Behrens and W. E. Lueschen is titled “Dicamba volatility” and was published by Weed Science in 1979. The article written by Hartzler was prompted by an increase in off-target injury to soybeans.  

This year Iowa is again experiencing widespread damage to soybeans from off-target dicamba movement. ISU Extension field agronomists have reported that this injury is more widespread in 2020 than in the previous three years following registration of over-the-top applications of dicamba to dicamba-tolerant soybean varieties. 

In response to these problems, Hartzler has summarized some of the recent research investigating factors that influence off-target movement of dicamba. Not surprising, the recent research mirrors the earlier research. The following is Hartzler’s summary report. For his full version complete with graphs and charts to illustrate the latest research results, visit Dicamba: What does the research say?

University of Tennessee research 

Mueller, T.C. and L.E. Steckel.  2019. Dicamba volatility in humidones as affected by temperature and herbicide treatment. Weed. Technol. 33:541-546.

Mueller and Steckel at the University of Tennessee evaluated dicamba losses due to volatilization as affected by temperature and tank-mixing with Roundup PowerMax.  

Xtendimax with Vapor Grip Technology was applied to soil contained in trays, and then placed inside humidors maintained at different temperatures. As would be expected, dicamba volatilization increased as temperatures increased. Tank-mixing dicamba with glyphosate increased dicamba concentrations in the air by 2.9 to 9.3 times across the temperature ranges evaluated compared to dicamba alone. The addition of Roundup PowerMax (or other glyphosate formulations) to dicamba reduces the pH of the spray solution, and this change in pH has been shown in other research to increase volatilization losses. 

University of Missouri research 

Bish, M.D., S.T. Farrell, R.N. Lerch, and K.W. Bradley. 2019. Dicamba losses to air after applications to soybean under stable and nonstable atmospheric conditions. J. Env. Q. 48:1675-1682. 

Bish et al. measured dicamba concentrations in the air above a soybean canopy sprayed with dicamba. High volume air samplers were positioned 6 inches above the canopy 30 minutes following the application of dicamba (Engenia plus Xtendimax with Vapor Grip Technology). Applications were made during the daytime and evening, the evening applications occurred during stable environmental conditions (low wind speeds). Applications were made according to label restrictions; a drift retardant was included but not glyphosate. 

No differences were determined between the two dicamba formulations. Dicamba concentrations in the air above the soybean canopy during the first 8 hours after application was approximately five times greater than at later sampling dates.  However, dicamba was still detected three days following the application.   

Time of application influenced dicamba presence in the air above the soybean canopy. Evenings were characterized by low wind speeds. Under these conditions higher dicamba concentrations were detected in the air than when dicamba was applied during periods with higher wind speeds. The authors stated the low wind speeds during evening applications could prevent dispersion of dicamba in the atmosphere, resulting in the higher concentrations in the first eight hours after application. 

University of Missouri research 

Oseland, E., M. Bish, L. Steckel, and K. Bradley. 2020. Identification of environmental factors that influence the likelihood of off-target movement of dicamba. Pest Management. Sci. 76.

In this study, weed scientists at the University of Missouri evaluated factors that influenced whether commercial applications of dicamba on soybean were successful at preventing off-target movement and injury to adjacent crops. They evaluated 135 applications, 45% of the applications were classified as “successful.” Applications that had problems with off-target injury had a mean application temperature 3 degrees warmer than successful ones.  

Impact of wind speed on application success was less clear. Maximum wind speed on the day of application was inversely related with the chance of success. With most pesticides the primary concern with drift is the movement of spray droplets with wind. They suggested that higher winds could disperse dicamba, reducing the amount of dicamba contacting sensitive plants in the area.

Bradley’s group documented higher concentrations of dicamba in the atmosphere when the product was applied during calm conditions (Bish et al. 2019). The likelihood of a successful application decreased with increasing winds the day following application. 

The researchers found that the likelihood of an unsuccessful application (off-target injury) increased as the soil pH decreased. They conducted trials with pH-adjusted soil to evaluate volatilization of dicamba off the soil surface. Plastic hoop structures were erected over susceptible soybean. Dicamba was applied to soil contained in 20-inch by 11-inch flats, following application the flats were placed within the hoops for 72 hours to allow volatilization from the soil surface.  

Dicamba volatilization increased as pH decreased. It’s important to note that it’s the pH of the soil surface that will determine vapor loss; pH values from routine soil tests may not be valid for evaluating soil pH influence on volatility. Fields under no-till production or that have surface applications of N likely have a surface pH more acidic than pH provided by a soil test. Other research has shown greater volatilization losses when the pH of the carrier solution is decreased. 

Several dicamba formulations were evaluated, and while there were significant differences in vapor loss among formulations, all resulted in measurable soybean injury. All formulations had greatest losses when applied to a soil with a 4.3 pH. 

Recent Weed Technology report  

Soltani, N. et al. 2020. Off-target movement assessment of dicamba in North America.  Weed Technol. 34:318-330. 

A recent paper in Weed Technology evaluated off-target movement of dicamba applied to dicamba-resistant (DR) soybean to adjacent susceptible soybean. A combination of dicamba (Xtendimax plus Vapor Grip Technology) plus glyphosate was applied to a block of dicamba resistant soybeans planted within a field of susceptible soybeans. All applications were made according to label restrictions (sprayer set up, environmental conditions).  

To distinguish particle drift from vapor drift (secondary movement) tarps were placed over plants at regular intervals downwind during application. Dicamba symptoms on plants under tarps was attributed to vapor drift since the tarps would intercept spray droplets leaving the treated area during application. Soybean plants were rated at 21 to 28 days after application, and a model was developed to estimate the distance vapor drift would cause 1% and 10% injury. 

As experience has shown, the risk of off-target movement is hard to predict. The distance where 10% injury was observed was more than 10 times greater in Arkansas than the other locations. This is likely due to higher temperatures at and following application. At the other locations, secondary movement causing 10% injury ranged from zero feet in Ontario to 16 feet in Wisconsin. 

Secondary movement resulted in soybean injury that occurred at all but one location, and the authors concluded that high temperatures associated with low air movement increases the likelihood and magnitude of secondary movement resulting in crop injury. 

Hartzler concludes, “All of the aforementioned research supports that secondary movement [volatilization] is a significant contributor to dicamba movement from treated areas. Combining this volatility with the extreme sensitivity of non-resistant soybean varieties makes it essentially impossible to use current formulations of dicamba in a landscape where both resistant and susceptible soybeans are grown without significant crop injury.” 

 

 

TAGS: dicamba
Hide comments
account-default-image

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish