Farm Progress

Collaborative efforts continue to build on U-M stem rust research.

January 1, 2018

4 Min Read
‘SWITCH’ DISCOVERY: Scientists learned how the immune system in wheat resistant to the disease recognizes a fungal protein that “turns on” resistance and fends off the pathogen.David Hansen, U-M

For the first time, scientists are gaining ground in the race against wheat stem rust, a pathogen that threatens global food security because of its ability to kill wheat.

A team of researchers from the University of Minnesota, the University of Sydney, Rothamsted Research and USDA have discovered the first rust virulence molecule that wheat plants detect to “switch on” built-in resistance and stave off the disease.

Stem rust, historically the most dangerous pathogen of wheat is caused by the fungus Puccinia graminis f. sp. tritici (Pgt). A particularly destructive form of Pgt, Ug99, has recently received much attention because of its spread across Africa and the Middle East. Such geographic expansion and the emergence of other virulent strains related and non-related to Ug99 have caused great concerns for wheat production.

Even more alarming is the recent detection of new virulent strains in Europe, which could easily make their way to the US. Findings by this group of scientists published in the December issue of Science reveal how the immune system in plants resistant to this disease directly recognizes a specific fungal protein to subsequently turn on resistance and fend off the pathogen.

“For the first time, it will be possible to do DNA testing to identify whether a rust in a wheat crop anywhere in the world can overcome a rust-resistance gene, called Sr50, which is being introduced in high-yielding wheat varieties,” says Robert Park, University of Sydney professor of sustainable agriculture, co-leader of the research team. “This will indicate whether or not a given wheat crop needs to be sprayed with expensive fungicide quickly to protect against rust, which would otherwise devastate the crop in a matter of weeks.”

This is a key finding to stay ahead of rust disease epidemics, like those that have been extremely damaging in East Africa and making a comeback in Europe.

“It’s like an ongoing arms race; we’ve got to keep one step ahead of this changing pathogen,” says Park.

Peter Dodds, U-M plant pathology adjunct professor and co-corresponding author, said demand for wheat in the developing world was expected to jump 60% by 2050, and in economic terms alone the ramifications were huge.

“Now that we’ve identified how stem rust strains are able to overcome Sr50 resistance — by mutation of a gene we’ve identified called AvrSr50 — this information can be used to help prioritize resistance genes for deployment,” Dodds says.

Global research
Owning to a long history of stem rust research expertise, U-M College of Food, Agricultural and Natural Resource Sciences professor Brian Steffenson and adjunct professor Yue Jin have been collecting Pgt isolates from around the world, including those causing epidemics in Africa. Plant Pathology professor Melania Figueroa and graduate student Feng Li leveraged these resources to examine the genetic variability of AvrSr50 in a set of Pgt isolates with global importance.

“Close examination of the sequence of this gene in strains from diverse origin can provide important clues to understand the evolution of this pathogen and how virulence emerges,” Figueroa says.

A key contribution to the study was the analysis of an Sr50-virulent strain collected by USDA scientist Yue Jin from barberry, the alternate host of Pgt where the pathogen undergoes sexual reproduction. This strain contains a variation of a gene that is not recognized by Sr50, which helped to confirm the identity of the gene and showed how stem rust can evolve to overcome resistance.

Using a Biosafety Level 3 containment facility, the U-M team was also able to work with the African strain Ug99 under maximum restricted conditions to prevent pathogen escapes.

“It is essential we determine the propensity of Pgt strains to evolve virulence to specific resistance genes, in this case we know that Ug99 may be primed to defeat Sr50 in the field,” Figueroa says.

While this is a vital step forward in understanding how plants and this disease interact, there is much work yet to be done before science will have a complete understanding of these interactions. Unraveling these molecular interactions can also assist in understanding other important rust diseases such as those affecting other cereals and crops like soybean and coffee.

“Our results so far show that the plant immune system is able to directly recognize the fungal protein,” Dodds says, “but we want to understand the whole process better — what’s going on at the protein level, at the gene level, and how the fungus can escape recognition.”

Source: University of Minnesota


Subscribe to receive top agriculture news
Be informed daily with these free e-newsletters

You May Also Like