Farm Progress is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

5-year study offers look at tillage effects on soil health

5-year study offers look at tillage effects on soil health
Many organic farms rely on tillage for weed control, but it could have lasting impacts for the environment

Tillage can be a weapon of choice for many organic farmers in the battle against weeds, but according to a Penn State study there could be environmental consequences for continued tillage, depending on when it's used.

Related: How to do tillage the right way

"We know that organic farming relies a good deal on tillage to manage weeds and to incorporate manure and cover crops into soils, and our research shows that this practice can pose environmental tradeoffs," said Denise Finney, a Penn State postdoctoral scholar.

"Although it helps to reduce the use of chemicals, tillage – especially fall tillage – is an important driver of nitrogen dynamics and has potential environmental implications," she said.

In a study that spanned five years, Finney and her colleagues conducted intensive nitrogen monitoring in four different cropping systems designed to allow comparisons of soil nitrogen levels over time and under different organic management practices.

Their results may help growers make decisions that will reduce their nitrogen losses.

"Nitrogen is complicated," said Finney. "It's affected by variables we can't control, like temperature and moisture, and by management decisions that we make."

Though researchers know a good deal about the impacts of these different variables on nitrogen availability and potential losses singularly, Finney's team wanted to understand how they interact in the field, particularly looking at organically managed systems.

How the research was designed
The researchers carried out their field-based experiment by implementing four cropping systems designed to replicate typical Pennsylvania organic feed and forage production systems.

They differed from each other in terms of the cash crops and cover crops that were grown, the sequence in which they were grown, the timing and intensity of tillage operations and manure inputs.

Related: Hold Off On Tillage, Keep Soil Covered

• The first cropping system was planted with a sequence of cover crops during the first growing season and this system was conventionally tilled between each planting. For the next two years, they kept this system in a minimally tilled alfalfa crop.

• The second cropping system received a manure application and then a summer planting of sudangrass -- a cover crop -- that was tilled and followed by a fall fallow period. Like the first system, this one also was in minimally tilled alfalfa for the next two years.

• The third cropping system was sown in a cereal rye/hairy vetch cover crop in the fall, which was allowed to grow through the summer before being tilled. This system used a late summer tilled fallow to control the perennial weed, Canada thistle. In the fall, the researchers sowed rye, which over wintered and the researchers harvested it the following summer. This system then received a manure application before being planted in no-till corn.

• The fourth cropping system used a sequence of minimally tilled cover crops – including buckwheat, rye and hairy vetch – before the researchers planted corn that was managed with conventional tillage. This system also received manure before corn production.

The variations between the four cropping systems allowed the researchers to observe how different management practices interact with climate variables to influence two key pieces of the nitrogen cycle: The amount of plant-available, or inorganic, nitrogen present in the soil throughout the growing season, and the amount of nitrate present in soil water below the plant-root zone.

The researchers collected soil samples from the test fields every two weeks from March to November during each year of the study and analyzed them for inorganic nitrogen levels. They also used water-collecting devices during the first year of the study to sample water from below the root zone, measuring its nitrate content to gauge potential nitrate losses from the cropping systems.

Analyzing the cropping data
To analyze the vast amount of data collected over the course of the study –  including 2,300 soil samples, as well as daily air temperature, precipitation, and soil temperature measurements -- the researchers used the "machine learning" statistical method to determine how these numerous and complex variables interacted to affect soil nitrogen.

Their results indicate that tillage was the most important driver of potential nitrogen loss across the four cropping systems, especially in late summer and early fall.

Related: Nitrogen, phosphorus could be altering soil microbes

When fall tillage was followed by a period of fallow, these late-season bursts of nitrogen were not captured by plant uptake and were vulnerable to leaching, said Finney, a point that has important implications for growers.

"We need to make sure we're making decisions about the timing of tillage operations with consideration to not only our weed management goals but also our nitrogen management goals. We know tillage is going to release nitrogen, so let's make sure we're following it with some means of recapturing that nitrogen," she said, adding that spring tillage can be beneficial to release nitrogen required to grow cash crops. Planting winter cover crops is a good strategy to capture nitrogen that may be released with fall tillage.

While nutrient-management responsibilities ultimately rest with farmers, Finney feels there's also room for policy to play a role.

"I think it's interesting that, to my knowledge, our federal organic policies don't discuss tillage, but what we are seeing clearly here is that tillage has potential environmental implications," she said.

Source: Penn State

TAGS: Crops
Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.