Farm Progress is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Serving: IA
Prediction For Stewart's Disease Of Corn

Prediction For Stewart's Disease Of Corn

Despite the warmer December, January and February temperatures, the risk for Stewart's disease of corn in 2011, based on two predictive models, is negligible to very low throughout most of Iowa.

Although December, January and February temperatures were somewhat warmer across Iowa, compared to the 2009-2010 winter, the risk for Stewart's disease of corn in 2011, based on two predictive models, is negligible to very low throughout most of Iowa.

That's the conclusion of Iowa State University plant pathologists Forrest Nutter, Alison Robertson, Sharon Eggenberger and entomologist Erin Hodgson. They provide the following observations and outlook for this corn disease, which is spread by an insect, the corn flea beetle.

Stewart's disease, also known as Stewart' s wilt, is caused by the bacterium Pantoea stewartii. An insect vector, the corn flea beetle (see photo below), plays a critical role in the overwintering survival and plant-to-plant spread of this microorganism. The bacterium survives the winter months within the gut of hibernating corn flea beetles. If winter temperatures are mild enough for corn flea beetle populations to survive locally, the bacterium will also survive. In the spring, surviving corn flea beetles infested with P. stewartii will emerge from grassy areas near cornfields and, as they feed, transmit the pathogen to corn seedlings.


Corn flea beetle on a corn seedling leaf.


Stewart's disease can occur at any stage of corn development, but symptoms are almost always associated with flea beetle feeding. Corn seedlings can wilt rapidly from systemic infection, and seedling death is common, especially in seed corn and sweet corn fields. Plants that survive the seedling wilt phase will be stunted and will serve as a source of the pathogen, for future generations of corn flea beetles to acquire and transmit throughout the crop.

Plant-to-plant spread by overwintering corn flea beetles will continue until late May, when corn flea beetles lay their eggs at the base of corn plants. The overwintering generation of adult corn flea beetles then die. In early-to-late June, there is a beetle-free period, lasting two to three weeks, which ends as the next generation of adult corn flea beetles (known as the first summer generation) begin to emerge and feed. During this beetle-free period, foliar insecticide sprays are not effective.

The first summer generation of adult corn flea beetles emerges in late June, and feeds on infected corn plants. The beetles can acquire the bacterium and facilitate the further spread of the pathogen to healthy corn plants. Later in the growing season, usually after pollination, the leaf blight phase of Stewart's disease may occur. Diseased plants at this phase first exhibit long, wavy, water-soaked streaks (lesions); diseased leaf tissue then turns yellow and dies (see photo below). Corn flea beetle feeding scars are usually visible within the lesions. If the disease is severe, whole leaves may wilt and die.



Early symptoms of Stewart's disease on a corn leaf. A second generation of corn flea beetles will emerge about mid-August. Insects from this generation overwinter. If the overwintering adults harbor the bacterium, the pathogen can also survive until the next growing season.

Disease prediction models

Mild winters during the late 1990s and early 2000 years resulted in the occurrence of severe epidemics of Stewart's disease in Iowa. However, severe winters and the widespread adoption of planting insecticide-treated seed have greatly reduced corn flea beetle populations throughout Iowa in recent years. Two disease prediction models are available to predict the seasonal and county-level risk of Stewart's disease: the Stevens-Boewe Index Model and the Iowa State Mean Monthly Temperature Model. Both models use the monthly mean winter temperatures for December, January and February to predict the degree to which corn flea beetle populations survived the winter.

The Stevens-Boewe Index predicts the severity (how much of the corn leaf tissue is infected) for the mid-to-late season leaf-blight phase of Stewart's disease based on the sum of the mean temperatures for December, January and February. A sum below 80 indicates a negligible risk; 80 to 85 is considered a low risk; 85 to 90 indicates moderate risk; and greater than 90 is considered a severe risk. The summed monthly mean temperatures for the nine Iowa agricultural climate districts are presented in the map below:


The Stevens-Boewe risk level for the 2011 growing season is negligible for all nine agricultural climate districts in Iowa.



The Iowa State University Stewart's disease model predicts the prevalence of Stewart's disease, with prevalence being defined as the percentage of fields predicted to be infected by the Stewart's disease bacterium. A high prevalence of Stewart's disease is predicted if the mean monthly air temperatures for December, January and February are each above 24 degrees F. Eight of the nine agricultural climate districts had either zero months or just one month above 24 degrees F. This indicates that survival of large corn flea beetle populations is highly unlikely this winter, in all but the southwest climate district, which has a moderate risk. The Iowa State Model prediction for 2011 is shown below.

Continuous snow cover in parts of Iowa from late December through February could have functioned as an insulation blanket to protect corn flea beetles from subfreezing temperatures. Even so, the ISU specialists predict that corn flea beetle populations in 2011 will be extremely low and spotty this spring, so the anticipated risk of damage due to Stewart's wilt based upon both models is negligible-to-low statewide.


Insect management is used to control this disease

Corn flea beetle, the vector of Stewart's disease, can be suppressed with IPM tools such as hybrid selection, scouting and insecticides. Areas with potential risk should incorporate resistant hybrids to minimize adult attraction and subsequent egg laying. Susceptible hybrids planted in historically infected areas should be planted later to discourage adult colonization. Regardless of hybrid selection, all corn fields should be scouted for adult corn flea beetles several times a week during emergence and seedling stages. Look for the shiny, black adults feeding on leaves. Try to walk quietly, as they are easily disturbed and will jump off the plants. Also look for long, light feeding scars on the leaves.

Seed treatments may also provide early season management for the beetle and Stewart's wilt. A 2000 study at the University of Illinois demonstrated that two insecticides, imidacloprid (Gaucho) and thiamethoxam (Cruiser), applied to sweet corn seed, reduced the incidence of Stewart's wilt by 50% to 85% under field conditions with naturally occurring populations of corn flea beetles. According to the researchers, these seed-treatment insecticides controlled Stewart's disease during the very early growth of corn seedlings when applications of conventional, foliar insecticides were ineffective. The full article, Control of Stewart’s Wilt in Sweet Corn with Seed Treatment Insecticides, is available online.

Consider using treatment threshold guidelines to protect yield. Corn flea beetle can be controlled with timely applications. Currently labeled products include pyrethroids (Asana XL, Mustang Max, Warrior II), organophosphates (Lorsban 4E, Nufos 4E), and carbamates (Lannate LV, Sevin 4F). See manufacturer's labels for use rates and restrictions. Use the following thresholds for rescue treatments in corn:

Field corn--prior to stage V5, 50% of plants with severe feeding injury and five or more beetles per plant.

Seed corn--on susceptible inbreds, 10% of the plants with severe feeding injury and two or more beetles per plant.

Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.