is part of the Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

  • American Agriculturist
  • Beef Producer
  • Corn and Soybean Digest
  • Dakota Farmer
  • Delta Farm Press
  • Farm Futures
  • Farm Industry news
  • Indiana Prairie Farmer
  • Kansas Farmer
  • Michigan Farmer
  • Missouri Ruralist
  • Nebraska Farmer
  • Ohio Farmer
  • Prairie Farmer
  • Southeast Farm Press
  • Southwest Farm Press
  • The Farmer
  • Wallaces Farmer
  • Western Farm Press
  • Western Farmer Stockman
  • Wisconsin Agriculturist

New tool for improving switchgrass

USDA Agricultural Research Service (ARS) scientists have developed a new tool for deciphering the genetics of a native prairie grass widely studied for its potential as a biofuel.

The genetic map of switchgrass, published by Christian Tobias, a molecular biologist at the ARS Western Regional Research Center in Albany, Calif., and his colleagues, is expected to speed up the search for genes that will make the perennial plant a more viable source of bioenergy.

Switchgrass is now grown as a cattle feed and to restore depleted soils. But interest in using it as a biofuel has intensified in recent years because it can be burned to produce electricity and, like corn stalks, can be converted to ethanol.

Switchgrass grows on marginal lands, is adaptable to different regions, and as a perennial does not need to be replanted each year which means lower energy costs and less runoff.

To assemble the genetic map, the team crossed a commercial variety of switchgrass known as Kanlow with an ARS-developed variety known as Alamo to produce 238 plants. They extracted DNA from that population and assembled a map based on more than 1,000 genetic markers that could each be attributed to one parent or the other.

The map divides the switchgrass genome into 18 distinct groups of genes linked together on the same strand of DNA. The results were recently published in the journal Genetics.

The work is funded by the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture, as part of the joint USDA-DOE Plant Feedstock Genomics for Bioenergy Program.

Understanding the genetic composition of switchgrass could produce big rewards. To make switchgrass more commercially viable as a biofuel, scientists are searching for ways to increase yields and make it easier to break down the plant cell walls, an essential step in producing ethanol from cellulosic biomass.

The genetic map could lead to genes associated with cell wall composition, crop yields, and other useful traits. Scientists will be able to use the genetic map to compare the genetic profile of switchgrass to that of rice, sorghum, and other plants with better understood genomes and find analogues to genes linked to specific traits in those crops.

ARS is the principal intramural scientific research agency of USDA. The work supports the USDA priority of developing new sources of bioenergy.

TAGS: Management
Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish